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Abstract—In the field of autonomous vehicle driving, the
vehicle’s ability to perceive its surroundings is an essential feature
that allows it to perform driving with autonomy. Being able to ex-
tract information from a vehicle’s environment with cameras that
provide pixel data such as patches of sidewalks, people, streets,
and road conditions makes it possible. The primary method of
gathering this information is by using Semantic segmentation.
There have been several types of semantic segmentation models in
recent years with varying performance with a focus on efficiency
and accuracy. This method of feature extraction requires a
considerable amount of computation which can lead to slower
performance, a critical attribute due to the nature of autonomous
vehicle driving, so it must be efficient enough to run in real-time.
It also needs to be highly accurate to ensure that every decision
it makes is based on reliable results given by the model.

Index Terms—Semantic segmentation, autonomous vehicle,
feature extraction, ground truth

I. INTRODUCTION

The motivation behind this paper is to review and provide
insight on the research done in the field of autonomous driving,
specifically the detection of objects in a vehicle’s environment.
The most common technique used for this problem is by
applying image segmentation, the process of labeling pixels
of an image as certain objects, from a camera mounted on
the vehicle. By using this technique, the vehicle can use the
information gathered from this technique and make decisions
based on the environment and its surroundings. For this paper,
we have selected a variety of common datasets used for
researching semantic segmentation and provide image data
with labeled pixels and a popular semantic segmentation ar-
chitecture that is suited for detecting and identifying objects in
a vehicle’s environment. The datasets we have chosen include
CARLA (CAR Learning to Act) [6] and Cityscapes Image
Pairs [7] which will be discussed in more detail later in the
paper. Autonomous vehicles are a rapidly growing industry on
the current infrastructure of the world. As such vehicles are put
into the world, it is critical to understand not only how these
vehicles track and see around them, but also the challenges
computationally such methods like semantic segmentation has
on these vehicles. In addition, the use of not only real images
but also computer generated images are interesting ways to
further the confidence and understanding of how such models
are influenced by the training datasets.

Fig. 1: Example of the semantic segmentation with au-
tonomous driving from [2]

II. LITERATURE REVIEW AND RELATED WORKS

Autonomous driving is a vastly growing field for the auto-
mobile industry. As a part of this is the expanding research
for object detection utilizing semantic segmentation. Semantic
segmentation is the process of calculating some classifying
label associated with every pixel in the image. Object detection
is not a new field in computer vision and machine learning.
Various techniques from [1, 2, 3, 4] are applied to different
but similar problems. Specifically, [2] delves into the object
detection of autonomous vehicles with a big problem being the
localization and mapping of detected objects. In the case of au-
tonomous driving this is crucial because the estimated location
of the objects potentially being people, cars, streets, etc are the
building blocks of the information gathering in an automotive
system. Many techniques can be used for the detection aspect
of the autonomous driving system’s information gathering. In
addition, solutions with semantic segmentation are tough to
get truly accurate as there are many influencing parts in any
possible image. [1] discusses how semantic segmentation not
only utilizes a classification method to identify the pixels in
each object and particularly the computation constraints in
doing so. A major challenge is the performance and compu-
tation speed of classification systems in autonomous driving
systems while also maintaining a confident output. Semantic
segmentation, while a good bit computational expensive out-
puts strong results making it a good choice for autonomous
driving detection system. Semantic segmentation has various
methods discussed in [3] with each again in simple terms,
represent a classification of every pixel in an image. Various
methods were used in the past, but recently a favored method is
done using Convolutional Neural Network (CNN). [5] formed



Fig. 2: Sample of the computer generated images in the
CARLA dataset

a basis for which [3] built from in the studies of convolutional
networks for images that provide training model that train pixel
to pixel with semantic segmentation. In such models exists a
full image and pixel prediction from learning. This paper will
attempt to extend the learning from these papers on the use
of semantic segmentation and CNNs specifically in the realm
of autonomous vehicle driving.

III. ANALYSIS DESIGN AND IMPLEMENTATION

The model architecture selected for performing semantic
segmentation on the datasets is U-Net, a fairly common
convolution neural network architecture with many variations
used for image segmentation. The goal of our experiment is
to apply the same U-Net model on the datasets provided for
semantic segmentation in an autonomous vehicle environment.
Analysis will include an accuracy and computational speed
assessment to further the understanding of the safety and
performance of applying U-Net on separate datasets. It will
provide some insight regarding the quality of data given by the
datasets and whether real image or computer generated image
data of vehicle driving footage influences the performance of
the model.

A. CARLA (CAR Learning to Act)

CARLA [6] contains the ground truth pixel-wise semantic
class labels for 28 video sequences from an urban driving
simulator. From the 28 video sequences, it contains 10,767
frames in total, each video being recorded at 10 Hz, and
with an average duration of 38.4 seconds. Of the videos
recorded for this dataset, half of them were recorded in sunny
weather, nine were recorded in rain, and the remaining five
were recorded in cloudy weather. The recordings also include
different driving conditions including moderate traffic, traffic
jams, stopping at lights, etc... A sample of the simulation
images that are being used is shown above. A key point to
be noted is how much brighter and the difference of contrast
between the images, this is a key aspect for why the dataset
was chosen.

TABLE I: Five samples of CARLA semantic class RGB values
and frequencies

Index Semantic class RGB values Relative Frequency
0 Traffic Sign [220,220,0] 0.05
1 Building [70,70,70] 14.08
2 Fence [190,153,153] 0.28
3 Other [250,170,160] 0.29
4 Pedestrian [220,20,60] 1.02

(a) Original

Fig. 3: The two images highlight the relationship between the
original (left image) and ground truth (right image) pair in the
Cityscapes dataset

B. Cityscapes Image Pairs

Cityscape Image Pairs [7] from the Berkeley AI Research
group has 2975 images for training and 500 validation images.
The images are 256x512 pixels. Each image contains the
original photo on the left half alongside the labeled image on
the right half. Unlike the CARLA dataset, these images are
from real world places and as a result have particular qualities
including the lighting and shadows being less contrasting than
computer generated datasets as well as being what the model
would actually be used for.

C. U-Net Architecture and Design

The architecture features an encoder for downsampling the
input followed by a decoder for upsampling, each consisting
of convolution blocks with skip connections (Fig. 4). The
input will be a batch of images with shape (BxCxWxH)
where B = 8 is the batch size, C = 3 represents the number
of channels the image has, and W = H = 256 represents
the width and height respectively. As the architecture implies,
the output will match the input shape. We included dropout
regularization with a probability of 20% between the encoder
and decoder layers and before the last convolution layer as a
means of preventing the co-adaption of neurons. For training,
Mean Square Error (MSE) will be used as the criterion for
computing the loss and Adam optimizer for updating the
neurons. The model will be constructed with PyTorch and
visualization tools such as matplotlib and pandas will be used.

A convolution block is defined by the following sequence
of operations on a given input:
ConvBlock(in channels,out channels=1,stride=1,padding=1)

- in channels: the number of channels in the input image



Fig. 4: Structure of U-Net Architecture that illustrates the
ConvBlocks and skip connections of the encoder and decoder

- out channels: the number of channels produced by the
convolution
- stride: the stride of the convolution by the given number
- padding: pads all fours sides of the image by the given
number

- Forward pass:
• Conv2d(in channel, out channel, kernel, stride, padding),

convolution
• BatchNorm2d(out channel), batch normalization
• ReLU(inplace=True), activation
• Conv2d(out channel, out channel, kernel), convolution
• ReLU(inplace=True), activation
For the decoder, a deconvolution will precede each

ConvBlock with matching input and output channels.

D. Data Preprocessing

Each of the datasets provide the original image and a
masked image with the ground truth labels for every pixel.
However, they are provided in different forms and will have
to be loaded in independently for each. The images will have
to match the input shape of the model.

• For the CARLA dataset, the data is given by two separate
folders where one contains the original images and the
other contains the ground truth segmentation map for
each of the video sequences. In total there are 10,767
samples

• The Cityscapes dataset includes the original and ground
truth segmentation map in a single image where the
original is on the left and the ground truth to the right. The
images will be split into two containers, one that contains
all of the original images and the other containing the
ground truths.

Once the data is properly separated by original and ground
truth images, they will be resized to match the input shape of
the model. There are an uneven amount of samples for each of
the datasets with differences in video quality. In order to give
a more balanced analysis, we will test the model with roughly

Fig. 5: U-Net model on CARLA dataset (training in blue and
validation in red)

the same number of samples for each of the datasets. As for
the CARLA dataset, we will select one of the video sequences
for this. There is a distinction to be made between the CARLA
dataset and the other two in terms of quality. CARLA provides
computer generated images from vehicle driving simulation,
while the others are real images gathered from driving.

E. Feature Extraction

The primary libraries used for this implementation include
PyTorch and OpenCV. The implementation after the prepro-
cessing of the image datasets will take the images through the
encoding section of using a set of filter sizes. Since the U-
Net will also need to be decoded, the same filter sizes will be
used for encoding as decoding. In terms of feature extraction,
semantic segmentation can be a bit computationally expensive
as each pixel in the image will need to be given its own
classification. Feature will be encoded in the first half of the U-
Net structure using the convolutional layers based on the filter
sizes provides. These extracted feature will then be decoded
up the latter half of the U-Net structure with the result being
an output image matching the shape of the input image. See
(Fig. 1 and Fig. 2).

IV. EXPERIMENT RESULTS

The results we gathered from experimenting on the U-Net
model can simply be visualized by the provided images and
loss graphs.

A. Training experiments

For the loss graphs, we initially did not use dropout reg-
ularization which resulted in a validation curve that would
not converge. We included dropout regularization in between
the encoder and decoder, as well as before the output which
resolved this issue. The size of the validation set and training
set we used is 30% and 70% respectively, which influences
the difference between each of the loss curves as see in the
graphs. A learning rate of 0.01 with Adam optimizer and batch
size of 8 was used.



Fig. 6: U-Net model on Cityscapes dataset (training in blue
and validation in red)

Fig. 7: CARLA images (original, predicted, ground truth) at
epoch 1, 15, and 30

For both datasets, we found that training performance was
roughly the same as the rate of convergence was more or less
similar.

B. Predictions

The figures (Fig. 5, 6) displays the sample at the beginning,
middle, and end of training the model for each dataset. The
Cityscapes sample image (Fig. 6) appears to be more fuzzy
in contrast with the CARLA sample (Fig. 5). The images
from the CARLA dataset was able to produce a more sharp
and pronounced segmentation map. The inference time for
each of the datasets remained the same as expected, with an
average time of 3 milliseconds for a forward pass running on
an NVIDIA GTX 1080 graphics card.

Fig. 8: Cityscapes images (original, predicted, ground truth)
at epoch 1, 15, and 30

V. CONCLUSION

Labeling each pixel in the image is critical in autonomous
driving as anything the vehicles ”sees” would need to checked
and classified. Image Segmentation provides performance and
accurate results. Training with computer generated images has
the potential goal in allowing the model to be more robust, as
well as showcasing a more applicable solution sample due to
the difference of lighting, shading, and contrast that exists in
computer generated images. This is crucial as vehicles can
be in numerous different environments, lighting, and shaded
areas. The CARLA dataset was able to provide an entry point
to which we could explore the use of computer generated
images and how they affect training and output of semantic
segmentation. This in combination with the real images from
the Cityscapes Image Pairs gave a clear way to distinguish
the difference of using real versus computer generated images.
After reviewing the results of the semantic segmentation model
using real and computer generated data, it is clear that the
model trained from the CARLA dataset was a bit more precise
in the output than the Cityscapes dataset as shown from the
output samples after training. Particularly the CARLA dataset
model was able to detect smaller object such as the lights and
signs significantly better while the Cityscapes model which
struggled to capture some of such objects. Larger objects
like the streets, cars, and surrounding environment were still
detected well in both models. Possible reasons for this discrep-
ancy is the fact the CARLA dataset is computer generated so
things such as differences in lighting and shadows may be
far less drastic than in real images used in the Cityscapes.
This problems exists in other solutions as well, specifically
[2] in which small objects were also tough to distinguish.
The models are more fine tuned when objects have a greater
contrast difference allowing a more distinguishable pattern
from surrounding objects, particularly large objects like walls
or trees. As for the machine learning architecture, U-Net was



able to provide a performant and decently accurate solution
for object detection and image segmentation. This applied in
an autonomous driving vehicle standpoint is sufficient to keep
up with the real time usage that these vehicles require, and
as a result satisfactory on that front as the inference time of
a few milliseconds is capable of keeping up with the speed
required. The other factor for safety and real application of
the U-Net structure in autonomous driving is accuracy. As
mentioned, there was a stronger detection found when using
the computer generated images than real images, but overall,
the output image segmentation gave correct output. A possible
solution for this discrepancy however, is more training images.
Particularly, more with images that have lower contrasting
edges between the objects and more variable lighting so that
the model will be able to better detect in such scenarios.
Overall, this implementation of the U-Net model had a visually
fair accuracy with room for improvement. It was able to
meet the speed requirements and capture objects accurately,
making the U-Net architecture trained with real and computer
generated images a sound solution for the autonomous driving
object detection problem with semantic segmentation while
also showcasing the use of computer generated images in
model creation.
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